Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 832
Filtrar
1.
Cell Death Dis ; 15(3): 201, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461287

RESUMO

Sarcopenia, a progressive and prevalent neuromuscular disorder, is characterized by age-related muscle wasting and weakening. Despite its widespread occurrence, the molecular underpinnings of this disease remain poorly understood. Herein, we report that levels of Agrin, an extracellular matrix (ECM) protein critical for neuromuscular formation, were decreased with age in the skeletal muscles of mice. The conditional loss of Agrin in myogenic progenitors and satellite cells (SCs) (Pax7 Cre:: Agrin flox/flox) causes premature muscle aging, manifesting a distinct sarcopenic phenotype in mice. Conversely, the elevation of a miniaturized form of Agrin in skeletal muscle through adenovirus-mediated gene transfer induces enhanced muscle capacity in aged mice. Mechanistic investigations suggest that Agrin-mediated improvement in muscle function occurs through the stimulation of Yap signaling and the concurrent upregulation of dystroglycan expression. Collectively, our findings underscore the pivotal role of Agrin in the aging process of skeletal muscles and propose Agrin as a potential therapeutic target for addressing sarcopenia.


Assuntos
Agrina , Sarcopenia , Animais , Camundongos , Agrina/genética , Agrina/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Sarcopenia/genética , Transdução de Sinais
2.
Cell Rep ; 43(1): 113668, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198277

RESUMO

Perlecan (HSPG2), a heparan sulfate proteoglycan similar to agrin, is key for extracellular matrix (ECM) maturation and stabilization. Although crucial for cardiac development, its role remains elusive. We show that perlecan expression increases as cardiomyocytes mature in vivo and during human pluripotent stem cell differentiation to cardiomyocytes (hPSC-CMs). Perlecan-haploinsuffient hPSCs (HSPG2+/-) differentiate efficiently, but late-stage CMs have structural, contractile, metabolic, and ECM gene dysregulation. In keeping with this, late-stage HSPG2+/- hPSC-CMs have immature features, including reduced ⍺-actinin expression and increased glycolytic metabolism and proliferation. Moreover, perlecan-haploinsuffient engineered heart tissues have reduced tissue thickness and force generation. Conversely, hPSC-CMs grown on a perlecan-peptide substrate are enlarged and display increased nucleation, typical of hypertrophic growth. Together, perlecan appears to play the opposite role of agrin, promoting cellular maturation rather than hyperplasia and proliferation. Perlecan signaling is likely mediated via its binding to the dystroglycan complex. Targeting perlecan-dependent signaling may help reverse the phenotypic switch common to heart failure.


Assuntos
Agrina , Proteoglicanas de Heparan Sulfato , Humanos , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Agrina/metabolismo , Miócitos Cardíacos/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo
3.
Neuroscience ; 541: 77-90, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38278474

RESUMO

Synapse formation following the generation of postsynaptic dendritic spines is essential for motor learning and functional recovery after brain injury. The C-terminal fragment of agrin cleaved by neurotrypsin induces dendritic spine formation in the adult hippocampus. Since the α3 subunit of sodium-potassium ATPase (Na/K ATPase) is a neuronal receptor for agrin in the central nervous system, cardiac glycosides might facilitate dendritic spine formation and subsequent improvements in learning. This study investigated the effects of cardiac glycoside digoxin on dendritic spine turnover and learning performance in mice. Golgi-Cox staining revealed that intraperitoneal injection of digoxin less than its IC50 in the brain significantly increased the density of long spines (≥2 µm) in the cerebral cortex in wild-type mice and neurotrypsin-knockout (NT-KO) mice showing impairment of activity-dependent spine formation. Although the motor learning performance of NT-KO mice was significantly lower than control wild-type mice under the control condition, low doses of digoxin enhanced performance to a similar degree in both strains. In NT-KO mice, lower digoxin doses equivalent to clinical doses also significantly improved motor learning performance. These data suggest that lower doses of digoxin could modify dendritic spine formation or recycling and facilitate motor learning in compensation for the disruption of neurotrypsin-agrin pathway.


Assuntos
Glicosídeos Cardíacos , Espinhas Dendríticas , Camundongos , Animais , Espinhas Dendríticas/metabolismo , Digoxina/farmacologia , Agrina , Camundongos Knockout , Adenosina Trifosfatases
4.
Brain Res ; 1825: 148705, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065285

RESUMO

The mechanism of action of low-density lipoprotein receptor related protein 4 (LRP4) is mediated largely via the Agrin-LRP4-MuSK signalling pathway in the nervous system. LRP4 contributes to the development of synapses in the peripheral nervous system (PNS). It interacts with signalling molecules such as the amyloid beta-protein precursor (APP) and the wingless type protein (Wnt). Its mechanisms of action are complex and mediated via interaction between the pre-synaptic motor neuron and post-synaptic muscle cell in the PNS, which enhances the development of the neuromuscular junction (NMJ). LRP4 may function differently in the central nervous system (CNS) than in the PNS, where it regulates ATP and glutamate release via astrocytes. It mayaffect the growth and development of the CNS by controlling the energy metabolism. LRP4 interacts with Agrin to maintain dendrite growth and density in the CNS. The goal of this article is to review the current studies involving relevant LRP4 signaling pathways in the nervous system. The review also discusses the clinical and etiological roles of LRP4 in neurological illnesses, such as myasthenia gravis, Alzheimer's disease and epilepsy. In this review, we provide a theoretical foundation for the pathogenesis and therapeutic application of LRP4 in neurologic diseases.


Assuntos
Agrina , Proteínas Relacionadas a Receptor de LDL , Proteínas Relacionadas a Receptor de LDL/metabolismo , Agrina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Junção Neuromuscular/metabolismo
5.
J Appl Physiol (1985) ; 135(5): 1082-1091, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37795532

RESUMO

Skeletal muscle disuse atrophy can cause degenerative changes in neuromuscular junction morphology. Although Daurian ground squirrels (Spermophilus dauricus) are a natural anti-disuse animal model for studying muscle atrophy during hibernation, little is known about the morphological and regulatory mechanisms of their neuromuscular junctions. Here, we found that morphological indices of the soleus muscle were significantly lower during hibernation (torpor and interbout arousal) compared with pre-hibernation but recovered during post-hibernation. In the extensor digitorum longus muscle, neuromuscular junction morphology did not change significantly during hibernation. Agrin-Lrp4-MuSK is a key pathway for the formation and maintenance of the neuromuscular junction. Our results showed that low-density lipoprotein receptor-associated protein 4 (Lrp4) expression in the soleus (slow muscle) decreased by 46.2% in the interbout arousal group compared with the pre-hibernation group (P = 0.019), with recovery in the post-hibernation group. Compared with the pre-hibernation group, agrin expression in the extensor digitorum longus (fast muscle) increased by 67.0% in the interbout arousal group (P = 0.016). In conclusion, periodic up-regulation in agrin expression during interbout arousal may be involved in the maintenance of neuromuscular junction morphology in the extensor digitorum longus muscle during hibernation. The degenerative changes in neuromuscular junction morphology and the periodic decrease in Lrp4 protein expression in the soleus during hibernation, these changes recovered to the pre-hibernation levels in the post-hibernation group, exhibiting significant plasticity. This plasticity may be one of the important mechanisms for resisting disuse atrophy in hibernating animals.NEW & NOTEWORTHY This study is the first to explore the neuromuscular junction morphology of slow- and fast-twitch muscles in Daurian ground squirrels during different periods of hibernation. Results showed that the neuromuscular junction maintained stable morphology in the extensor digitorum longus muscle. The degenerative changes in neuromuscular junction morphology and the periodic decrease in Lrp4 protein expression in the soleus muscle during hibernation recovered in post-hibernation, exhibiting significant plasticity.


Assuntos
Hibernação , Transtornos Musculares Atróficos , Animais , Sciuridae/metabolismo , Agrina/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Junção Neuromuscular , Fatores de Transcrição/metabolismo , Transtornos Musculares Atróficos/patologia , Hibernação/fisiologia
6.
Front Immunol ; 14: 1231611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841281

RESUMO

Introduction: Systemic lupus erythematosus (SLE) is an autoimmune disease involving many systems and organs, and individuals with SLE exhibit unique cancer risk characteristics. The significance of the basement membrane (BM) in the occurrence and progression of human autoimmune diseases and tumors has been established through research. However, the roles of BM-related genes and their protein expression mechanisms in the pathogenesis of SLE and pan-cancer development has not been elucidated. Methods: In this study, we applied bioinformatics methods to perform differential expression analysis of BM-related genes in datasets from SLE patients. We utilized LASSO logistic regression, SVM-RFE, and RandomForest to screen for feature genes and construct a diagnosis model for SLE. In order to attain a comprehensive comprehension of the biological functionalities of the feature genes, we conducted GSEA analysis, ROC analysis, and computed levels of immune cell infiltration. Finally, we sourced pan-cancer expression profiles from the TCGA and GTEx databases and performed pan-cancer analysis. Results: We screened six feature genes (AGRN, PHF13, SPOCK2, TGFBI, COL4A3, and COLQ) to construct an SLE diagnostic model. Immune infiltration analysis showed a significant correlation between AGRN and immune cell functions such as parainflammation and type I IFN response. After further gene expression validation, we finally selected AGRN for pan-cancer analysis. The results showed that AGRN's expression level varied according to distinct tumor types and was closely correlated with some tumor patients' prognosis, immune cell infiltration, and other indicators. Discussion: In conclusion, BM-related genes play a pivotal role in the pathogenesis of SLE, and AGRN shows immense promise as a target in SLE and the progression of multiple tumors.


Assuntos
Doenças Autoimunes , Interferon Tipo I , Lúpus Eritematoso Sistêmico , Neoplasias , Humanos , Biologia Computacional , Proteínas de Ligação a DNA , Interferon Tipo I/fisiologia , Neoplasias/genética , Proteoglicanas , Fatores de Risco , Fatores de Transcrição , Agrina/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-37582613

RESUMO

BACKGROUND AND OBJECTIVES: Up to 50% of patients with myasthenia gravis (MG) without acetylcholine receptor antibodies (AChR-Abs) have antibodies to muscle-specific kinase (MuSK). Most MuSK antibodies (MuSK-Abs) are IgG4 and inhibit agrin-induced MuSK phosphorylation, leading to impaired clustering of AChRs at the developing or mature neuromuscular junction. However, IgG1-3 MuSK-Abs also exist in MuSK-MG patients, and their potential mechanisms have not been explored fully. METHODS: C2C12 myotubes were exposed to MuSK-MG plasma IgG1-3 or IgG4, with or without purified agrin. MuSK, Downstream of Kinase 7 (DOK7), and ßAChR were immunoprecipitated and their phosphorylation levels identified by immunoblotting. Agrin and agrin-independent AChR clusters were measured by immunofluorescence and AChR numbers by binding of 125I-α-bungarotoxin. Transcriptomic analysis was performed on treated myotubes. RESULTS: IgG1-3 MuSK-Abs impaired AChR clustering without inhibiting agrin-induced MuSK phosphorylation. Moreover, the well-established pathway initiated by MuSK through DOK7, resulting in ßAChR phosphorylation, was not impaired by MuSK-IgG1-3 and was agrin-independent. Nevertheless, the AChR clusters did not form, and both the number of AChR microclusters that precede full cluster formation and the myotube surface AChRs were reduced. Transcriptomic analysis did not throw light on the pathways involved. However, the SHP2 inhibitor, NSC-87877, increased the number of microclusters and led to fully formed AChR clusters. DISCUSSION: MuSK-IgG1-3 is pathogenic but seems to act through a noncanonical pathway. Further studies should throw light on the mechanisms involved at the neuromuscular junction.


Assuntos
Miastenia Gravis , Receptores Proteína Tirosina Quinases , Humanos , Agrina/farmacologia , Imunoglobulina G , Proteínas Musculares/metabolismo , Miastenia Gravis/tratamento farmacológico , Fosforilação , Receptores Colinérgicos
8.
Sci Rep ; 13(1): 14054, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640745

RESUMO

Congenital myasthenic syndromes (CMS) are a clinically and genetically heterogeneous group of rare diseases due to mutations in neuromuscular junction (NMJ) protein-coding genes. Until now, many mutations encoding postsynaptic proteins as Agrin, MuSK and LRP4 have been identified as responsible for increasingly complex CMS phenotypes. The majority of mutations identified in LRP4 gene causes bone diseases including CLS and sclerosteosis-2 and rare cases of CMS with mutations in LRP4 gene has been described so far. In the French cohort of CMS patients, we identified a novel LRP4 homozygous missense mutation (c.1820A > G; p.Thy607Cys) within the ß1 propeller domain in a patient presenting CMS symptoms, including muscle weakness, fluctuating fatigability and a decrement in compound muscle action potential in spinal accessory nerves, associated with congenital agenesis of the hands and feet and renal malformation. Mechanistic expression studies show a significant decrease of AChR aggregation in cultured patient myotubes, as well as altered in vitro binding of agrin and Wnt11 ligands to the mutated ß1 propeller domain of LRP4 explaining the dual phenotype characterized clinically and electoneuromyographically in the patient. These results expand the LRP4 mutations spectrum associated with a previously undescribed clinical association involving impaired neuromuscular transmission and limb deformities and highlighting the critical role of a yet poorly described domain of LRP4 at the NMJ. This study raises the question of the frequency of this rare neuromuscular form and the future diagnosis and management of these cases.


Assuntos
Síndromes Miastênicas Congênitas , Humanos , Síndromes Miastênicas Congênitas/genética , Agrina/genética , Mutação , , Proteínas Relacionadas a Receptor de LDL/genética
9.
Pharmacol Res ; 194: 106819, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321467

RESUMO

Lung cancer is the main reason for cancer-associated death globally, and lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer. Recently, AGRN is considered playing an vital role in the development of some cancers. However, the regulatory effects and mechanisms of AGRN in LUAD remain elusive. In this study, we clarified the significant upregulation of AGRN expression in LUAD by single-cell RNA sequencing combined with immunohistochemistry. Besides, we confirmed that LUAD patients with high AGRN expression are more susceptible to lymph node metastases and have a worse prognosis by a retrospective study of 120 LUAD patients. Next, we demonstrated that AGRN directly interact with NOTCH1, which results in the release of the intracellular structural domain of NOTCH1 and the subsequent activation of the NOTCH pathway. Moreover, we also found that AGRN promotes proliferation, migration, invasion, EMT and tumorigenesis of LUAD cells in vitro and in vivo, and that these effects are reversed by blocking the NOTCH pathway. Furthermore, we prepared several antibodies targeting AGRN, and clarify that Anti-AGRN antibody treatment could significantly inhibit proliferation and promote apoptosis of tumor cells. Our study highlights the important role and regulatory mechanism of AGRN in LUAD development and progression, and suggests that antibodies targeting AGRN have therapeutic potential for LUAD. We also provide theoretical and experimental evidence for further development of monoclonal antibodies targeting AGRN.


Assuntos
Adenocarcinoma de Pulmão , Agrina , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Estudos Retrospectivos , Transdução de Sinais , Agrina/metabolismo , Receptor Notch1/metabolismo
10.
J Biol Chem ; 299(8): 104962, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356721

RESUMO

Collagen Q (ColQ) is a nonfibrillar collagen that plays a crucial role at the vertebrate neuromuscular junction (NMJ) by anchoring acetylcholinesterase to the synapse. ColQ also functions in signaling, as it regulates acetylcholine receptor clustering and synaptic gene expression, in a manner dependent on muscle-specific kinase (MuSK), a key protein in NMJ formation and maintenance. MuSK forms a complex with low-density lipoprotein receptor-related protein 4 (LRP4), its coreceptor for the proteoglycan agrin at the NMJ. Previous studies suggested that ColQ also interacts with MuSK. However, the molecular mechanisms underlying ColQ functions and ColQ-MuSK interaction have not been fully elucidated. Here, we investigated whether ColQ binds directly to MuSK and/or LRP4 and whether it modulates agrin-mediated MuSK-LRP4 activation. Using coimmunoprecipitation, pull-down, plate-binding assays, and surface plasmon resonance, we show that ColQ binds directly to LRP4 but not to MuSK and that ColQ interacts indirectly with MuSK through LRP4. In addition, we show that the LRP4 N-terminal region, which contains the agrin-binding sites, is also crucial for ColQ binding to LRP4. Moreover, ColQ-LRP4 interaction was reduced in the presence of agrin, suggesting that agrin and ColQ compete for binding to LRP4. Strikingly, we reveal ColQ has two opposing effects on agrin-induced MuSK-LRP4 signaling: it constitutively reduces MuSK phosphorylation levels in agrin-stimulated myotubes but concomitantly increases MuSK accumulation at the muscle cell surface. Our results identify LRP4 as a major receptor of ColQ and provide new insights into mechanisms of ColQ signaling and acetylcholinesterase anchoring at the NMJ.


Assuntos
Acetilcolinesterase , Agrina , Colágeno , Junção Neuromuscular , Humanos , Acetilcolinesterase/metabolismo , Agrina/genética , Agrina/metabolismo , Colágeno/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
11.
Cells ; 12(9)2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174727

RESUMO

Recent studies demonstrate the adverse effects of cannabinoids on development, including via pathways shared with ethanol exposure. Our laboratory has shown that both the nervous system and cardiac development are dependent on agrin modulation of sonic hedgehog (shh) and fibroblast growth factor (Fgf) signaling pathways. As both ethanol and cannabinoids impact these signaling molecules, we examined their role on zebrafish heart development. Zebrafish embryos were exposed to a range of ethanol and/or cannabinoid receptor 1 and 2 agonist concentrations in the absence or presence of morpholino oligonucleotides that disrupt agrin or shh expression. In situ hybridization was employed to analyze cardiac marker gene expression. Exposure to cannabinoid receptor agonists disrupted midbrain-hindbrain boundary development, but had no effect on heart development, as assessed by the presence of cardiac edema or the altered expression of cardiac marker genes. In contrast, exposure to 1.5% ethanol induced cardiac edema and the altered expression of cardiac marker genes. Combined exposure to agrin or shh morpholino and 0.5% ethanol disrupted the cmlc2 gene expression pattern, with the restoration of the normal expression following shh mRNA overexpression. These studies provide evidence that signaling pathways critical to heart development are sensitive to ethanol exposure, but not cannabinoids, during early zebrafish embryogenesis.


Assuntos
Canabinoides , Peixe-Zebra , Animais , Peixe-Zebra/genética , Etanol/toxicidade , Etanol/metabolismo , Proteínas Hedgehog/metabolismo , Agrina/metabolismo , Canabinoides/metabolismo , Edema Cardíaco , Morfolinos/farmacologia , Coração
12.
Proc Natl Acad Sci U S A ; 120(23): e2300453120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252960

RESUMO

MuSK is a receptor tyrosine kinase (RTK) that plays essential roles in the formation and maintenance of the neuromuscular junction. Distinct from most members of RTK family, MuSK activation requires not only its cognate ligand agrin but also its coreceptors LRP4. However, how agrin and LRP4 coactivate MuSK remains unclear. Here, we report the cryo-EM structure of the extracellular ternary complex of agrin/LRP4/MuSK in a stoichiometry of 1:1:1. This structure reveals that arc-shaped LRP4 simultaneously recruits both agrin and MuSK to its central cavity, thereby promoting a direct interaction between agrin and MuSK. Our cryo-EM analyses therefore uncover the assembly mechanism of agrin/LRP4/MuSK signaling complex and reveal how MuSK receptor is activated by concurrent binding of agrin and LRP4.


Assuntos
Agrina , Receptores Colinérgicos , Receptores Colinérgicos/metabolismo , Agrina/química , Agrina/metabolismo , Proteínas Relacionadas a Receptor de LDL/química , Transdução de Sinais , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
13.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108583

RESUMO

Agrin is a heparan sulfate proteoglycan essential for the clustering of acetylcholine receptors at the neuromuscular junction. Neuron-specific isoforms of agrin are generated by alternative inclusion of three exons, called Y, Z8, and Z11 exons, although their processing mechanisms remain elusive. We found, by inspection of splicing cis-elements into the human AGRN gene, that binding sites for polypyrimidine tract binding protein 1 (PTBP1) were extensively enriched around Y and Z exons. PTBP1-silencing enhanced the coordinated inclusion of Y and Z exons in human SH-SY5Y neuronal cells, even though three constitutive exons are flanked by these alternative exons. Deletion analysis using minigenes identified five PTBP1-binding sites with remarkable splicing repression activities around Y and Z exons. Furthermore, artificial tethering experiments indicated that binding of a single PTBP1 molecule to any of these sites represses nearby Y or Z exons as well as the other distal exons. The RRM4 domain of PTBP1, which is required for looping out a target RNA segment, was likely to play a crucial role in the repression. Neuronal differentiation downregulates PTBP1 expression and promotes the coordinated inclusion of Y and Z exons. We propose that the reduction in the PTPB1-RNA network spanning these alternative exons is essential for the generation of the neuron-specific agrin isoforms.


Assuntos
Neuroblastoma , RNA , Humanos , RNA/metabolismo , Agrina/genética , Agrina/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo
14.
Aging Clin Exp Res ; 35(6): 1161-1186, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36977974

RESUMO

BACKGROUND: C-terminal Agrin Fragment (CAF) has emerged as a potent biomarker for identifying sarcopenia. However, the effect of interventions on CAF concentration and the association of CAF with sarcopenia components are unclear. OBJECTIVE: To review the association between CAF concentration and muscle mass, muscle strength, and physical performance among individuals with primary and secondary sarcopenia and to synthesize the effect of interventions on the change in the level of CAF concentration. METHODS: A systematic literature search was conducted in six electronic databases, and studies were included if they met the selection criteria decided a priori. The data extraction sheet was prepared, validated, and extracted relevant data. RESULTS: A total of 5,158 records were found, of which 16 were included. Among studies conducted on individuals with primary sarcopenia, muscle mass was significantly associated with CAF levels, followed by hand grip strength (HGS) and physical performance, with more consistent findings in males. While in secondary sarcopenics, the strongest association was found for HGS and CAF levels, followed by physical performance and muscle mass. CAF concentration was reduced in trials that used functional, dual task, and power training, whereas resistance training and physical activity raised CAF levels. Hormonal therapy did not affect serum CAF concentration. CONCLUSION(S): The association between CAF and sarcopenic assessment parameters varies in primary and secondary sarcopenics. The findings would help practitioners and researchers choose the best training mode/parameters/exercises to reduce CAF levels and, eventually, manage sarcopenia.


Assuntos
Sarcopenia , Humanos , Masculino , Agrina , Força da Mão/fisiologia , Força Muscular
15.
Cell Mol Life Sci ; 80(4): 82, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871239

RESUMO

Neurotrypsin (NT) is a neuronal trypsin-like serine protease whose mutations cause severe mental retardation in humans. NT is activated in vitro by Hebbian-like conjunction of pre- and postsynaptic activities, which promotes the formation of dendritic filopodia via proteolytic cleavage of the proteoglycan agrin. Here, we investigated the functional importance of this mechanism for synaptic plasticity, learning, and extinction of memory. We report that juvenile neurotrypsin-deficient (NT-/-) mice exhibit impaired long-term potentiation induced by a spaced stimulation protocol designed to probe the generation of new filopodia and their conversion into functional synapses. Behaviorally, juvenile NT-/- mice show impaired contextual fear memory and have a sociability deficit. The latter persists in aged NT-/- mice, which, unlike juvenile mice, show normal recall but impaired extinction of contextual fear memories. Structurally, juvenile mutants exhibit reduced spine density in the CA1 region, fewer thin spines, and no modulation in the density of dendritic spines following fear conditioning and extinction in contrast to wild-type littermates. The head width of thin spines is reduced in both juvenile and aged NT-/- mice. In vivo delivery of adeno-associated virus expressing an NT-generated fragment of agrin, agrin-22, but not a shorter agrin-15, elevates the spine density in NT-/- mice. Moreover, agrin-22 co-aggregates with pre- and postsynaptic markers and increases the density and size of presynaptic boutons and presynaptic puncta, corroborating the view that agrin-22 supports the synaptic growth.


Assuntos
Potenciação de Longa Duração , Peptídeo Hidrolases , Humanos , Animais , Camundongos , Idoso , Agrina , Espinhas Dendríticas , Transtornos da Memória
16.
Zool Res ; 44(2): 331-340, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36799225

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating motoneuron disease, in which lower motoneurons lose control of skeletal muscles. Degeneration of neuromuscular junctions (NMJs) occurs at the initial stage of ALS. Dipeptide repeat proteins (DPRs) from G4C2 repeat-associated non-ATG (RAN) translation are known to cause C9orf72-associated ALS (C9-ALS). However, DPR inclusion burdens are weakly correlated with neurodegenerative areas in C9-ALS patients, indicating that DPRs may exert cell non-autonomous effects, in addition to the known intracellular pathological mechanisms. Here, we report that poly-GA, the most abundant form of DPR in C9-ALS, is released from cells. Local administration of poly-GA proteins in peripheral synaptic regions causes muscle weakness and impaired neuromuscular transmission in vivo. The NMJ structure cannot be maintained, as evidenced by the fragmentation of postsynaptic acetylcholine receptor (AChR) clusters and distortion of presynaptic nerve terminals. Mechanistic study demonstrated that extracellular poly-GA sequesters soluble Agrin ligands and inhibits Agrin-MuSK signaling. Our findings provide a novel cell non-autonomous mechanism by which poly-GA impairs NMJs in C9-ALS. Thus, targeting NMJs could be an early therapeutic intervention for C9-ALS.


Assuntos
Esclerose Amiotrófica Lateral , Animais , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Esclerose Amiotrófica Lateral/veterinária , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Agrina , Dipeptídeos/metabolismo
17.
Cells ; 12(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36831296

RESUMO

Wharton's jelly stem cells (WJSC) from the human umbilical cord (UC) are one of the most promising mesenchymal stem cells (MSC) in tissue engineering (TE) and advanced therapies. The cell niche is a key element for both, MSC and fully differentiated tissues, to preserve their unique features. The basement membrane (BM) is an essential structure during embryonic development and in adult tissues. Epithelial BMs are well-known, but similar structures are present in other histological structures, such as in peripheral nerve fibers, myocytes or chondrocytes. Previous studies suggest the expression of some BM molecules within the Wharton's Jelly (WJ) of UC, but the distribution pattern and full expression profile of these molecules have not been yet elucidated. In this sense, the aim of this histological study was to evaluate the expression of main BM molecules within the WJ, cultured WJSC and during WJSC microtissue (WJSC-MT) formation process. Results confirmed the presence of a pericellular matrix composed by the main BM molecules-collagens (IV, VII), HSPG2, agrin, laminin and nidogen-around the WJSC within UC. Additionally, ex vivo studies demonstrated the synthesis of these BM molecules, except agrin, especially during WJSC-MT formation process. The WJSC capability to synthesize main BM molecules could offer new alternatives for the generation of biomimetic-engineered substitutes where these molecules are particularly needed.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Adulto , Feminino , Gravidez , Humanos , Agrina/metabolismo , Cordão Umbilical , Células-Tronco Mesenquimais/metabolismo , Técnicas de Cultura de Células , Membrana Basal
18.
J Cachexia Sarcopenia Muscle ; 14(2): 730-744, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36772862

RESUMO

Ageing is accompanied by an inexorable loss of muscle mass and functionality and represents a major risk factor for numerous diseases such as cancer, diabetes and cardiovascular and pulmonary diseases. This progressive loss of muscle mass and function may also result in the insurgence of a clinical syndrome termed sarcopenia, exacerbated by inactivity and disease. Sarcopenia and muscle weakness yield the risk of falls and injuries, heavily impacting on health and social costs. Thus, screening, monitoring and prevention of conditions inducing muscle wasting and weakness are essential to improve life quality in the ageing modern society. To this aim, the reliability of easily accessible and non-invasive blood-derived biomarkers is being evaluated. C-terminal agrin fragment (CAF) has been widely investigated as a neuromuscular junction (NMJ)-related biomarker of muscle dysfunction. This narrative review summarizes and critically discusses, for the first time, the studies measuring CAF concentration in young and older, healthy and diseased individuals, cross-sectionally and in response to inactivity and physical exercise, providing possible explanations behind the discrepancies observed in the literature. To identify the studies investigating CAF in the above-mentioned conditions, all the publications found in PubMed, written in English and measuring this biomarker in blood from 2013 (when CAF was firstly measured in human serum) to 2022 were included in this review. CAF increases with age and in sarcopenic individuals when compared with age-matched, non-sarcopenic peers. In addition, CAF was found to be higher than controls in other muscle wasting conditions, such as diabetes, COPD, chronic heart failure and stroke, and in pancreatic and colorectal cancer cachectic patients. As agrin is also expressed in kidney glomeruli, chronic kidney disease and transplantation were shown to have a profound impact on CAF independently from muscle wasting. CAF concentration raises following inactivity and seems to be lowered or maintained by exercise training. Finally, CAF was reported to be cross-sectionally correlated to appendicular lean mass, handgrip and gait speed; whether longitudinal changes in CAF are associated with those in muscle mass or performance following physical exercise is still controversial. CAF seems a reliable marker to assess muscle wasting in ageing and disease, also correlating with measurements of appendicular lean mass and muscle function. Future research should aim at enlarging sample size and accurately reporting the medical history of each patient, to normalize for any condition, including chronic kidney disease, that may influence the circulating concentration of this biomarker.


Assuntos
Insuficiência Renal Crônica , Sarcopenia , Humanos , Sarcopenia/diagnóstico , Sarcopenia/etiologia , Agrina , Força da Mão/fisiologia , Reprodutibilidade dos Testes , Atrofia Muscular , Biomarcadores , Músculos
19.
Geroscience ; 45(3): 1289-1302, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609795

RESUMO

Although physiological data suggest that neuromuscular junction (NMJ) dysfunction is a principal mechanism underpinning sarcopenia, genetic studies have implicated few genes involved in NMJ function. Accordingly, we explored whether genes encoding agrin (AGRN) and neurotrypsin (PRSS12) were associated with sarcopenia phenotypes: muscle mass, strength and plasma C-terminal agrin fragment (CAF). PhenoScanner was used to determine if AGRN and/or PRSS12 variants had previously been implicated with sarcopenia phenotypes. For replication, we combined genotype from whole genome sequencing with phenotypic data from 6715 GenoFit participants aged 18-83 years. Dual energy X-ray absorptiometry assessed whole body lean mass (WBLM) and appendicular lean mass (ALM), hand dynamometry determined grip strength and ELISA measured plasma CAF in a subgroup (n = 260). Follow-up analyses included eQTL analyses, carrier analyses, single-variant and gene-burden tests. rs2710873 (AGRN) and rs71608359 (PRSS12) associate with muscle mass and strength phenotypes, respectively, in the UKBB (p = 8.9 × 10-6 and p = 8.4 × 10-6) and GenoFit cohort (p = 0.019 and p = 0.014). rs2710873 and rs71608359 are eQTLs for AGRN and PRSS12, respectively, in ≥ three tissues. Compared to non-carriers, carriers of rs2710873 had 4.0% higher WBLM and ALM (both p < 0.001), and 9.5% lower CAF concentrations (p < 0.001), while carriers of rs71608359 had 2.3% lower grip strength (p = 0.034). AGRN and PRSS12 are associated with muscle strength and mass in single-variant analyses, while PRSS12 has further associations with muscle strength in gene-burden tests. Our findings provide novel evidence of the relevance of AGRN and PRSS12 to sarcopenia phenotypes and support existing physiological data illustrating the importance of the NMJ in maintaining muscle health during ageing.


Assuntos
Sarcopenia , Humanos , Sarcopenia/genética , Agrina/genética , Músculos
20.
Injury ; 54(2): 345-361, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446670

RESUMO

Peripheral nerve injuries (PNI) lead to alterations in the Agrin-LRP4-MuSK pathway. This results in disaggregation of AChRs and change from epsilon (mature, innervated) to gamma (immature, denervated) subunit. Tubulization technique has been shown to be effective for PNI repair and it also allows the use of adjuvants, such as fibrin biopolymer (FB). This study evaluated the effect of the association of tubulization with FB after PNI on AChRs and associated proteins. Fifty-two adults male Wistar rats were used, distributed in 4 experimental groups: Sham Control (S), Denervated Control (D); Tubulization (TB) and Tubulization + Fibrin Biopolymer (TB+FB). Catwalk was performed every 15 days. Ninety days after surgery the right soleus muscles and ischiatic nerves were submitted to the following analyses: (a) morphological and morphometric analysis of AChRs by confocal microscopy; (b) morphological and morphometric analysis of the ischiatic nerve; (c) protein quantification of AChRs: alpha, gama, and epsilon, of Schwann cells, agrin, LRP4, MuSK, rapsyn, MMP3, MyoD, myogenin, MURF1 and atrogin-1. The main results were about the NMJs that in the TB+FB group presented morphological and morphometric approximation (compactness index; area of the AChRs and motor plate) to the S group. In addition, there were also an increase of S100 and AChRε protein expression and a decrease of MyoD. These positive association resulted in AChRs stabilization that potentiate the neuromuscular regeneration, which strengthens the use of TB for severe injuries repair and the beneficial effect of FB, along with tubulization technique.


Assuntos
Traumatismos dos Nervos Periféricos , Ratos , Animais , Masculino , Agrina/farmacologia , Agrina/metabolismo , Fibrina/metabolismo , Distribuição Normal , Ratos Wistar , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...